

SMA Package Schottky Rectifier SS24A Schottky Barrier Diode VRRM 40V 2A DO-214AC

Basic Information

- Place of Origin:
- Brand Name:
- SOCAY

Shenzhen, Guangdong, China

- Certification: REACH,RoHS,ISO
- Model Number:
- Minimum Order Quantity: 500
- Price: Negotia
- Delivery Time:

Our Product Introduction

- SS24A ity: 5000PCS Negotiable
- 5-8 work days

Product Specification

- Product Name: Package:
- Max. VRRM:
- Max. VRMS:
- Max. VDC:
- 1010,7. E
- Max. Average Forward Rectified Current:
- IFSM:
- R0JL:
- Highlight:
- 40V 28V 40V 2A 50A 35 /W

Schottky Barrier Diode

DO-214AC(SMA)

SMA Package Schottky Rectifier, DO-214AC Schottky Rectifier, SS24A Schottky Barrier Diode

SOCAY®

524

SMA Package Schottky Rectifier SS24A Schottky Barrier Diode VRRM 40V 2A Forward Rectified Current

SBD DATASHEET: <u>SS22A~SS220A(SMA)_v2211.1.pdf</u>

Schottky Rectifier SS24A Distinguishing Feature:

Low profile package for more application. Suitable for automated placement Very quick reverse recovery time High temperature soldering: 260 °C/10 seconds at terminals Not high power losses, not low efficiency Not high forward voltage drop Not low surge capability Not low temperature soldering :

Schottky Rectifier SS24A Mechanical Data:

Schottky Rectifier SS24A Case: JEDEC SMA molded plastic SS24A Terminals: Solder plated, solderable per J-STD-002B and JESD22-B102D Schottky Rectifier Polarity: Laser band denotes cathode end

Schottky Rectifier SS24A Main Ratings and Features:

	<u> </u>
Schottky Rectifier I _{F(AV)}	2.0A
Schottky Rectifier V _{RRM}	20 V to 200 V
SS24A I _{FSM}	50A
Schottky Rectifier SS24A V _F	0.50V, 0.55V, 0.70V, 0.85V,0.95V
T _{j max.}	125

Symb ol	SS22 A							SS21 5A	SS220 A	Unit
V _{RRM}	20	30	40	50	60	80	100	150	200	v
V _{RMS}	14	21	28	35	42	56	70	105	140	v
V _{DC}	20	30	40	50	60	80	100	150	200	V
	2	-	-	-	-	-	-	-	-	A
IESM	50									A
	10000									V/µs
R _{θJL}	35									/w
G	-65 (0		2" (5.0	× 5 0	mm) o	opper	nad ar	226		
	oľ V _{RRM} V _{DC} I _{F(AV)} I _{FSM} dv/dt R _{0JL} G	oí A V _{RRM} 20 V _{RMS} 14 V _{DC} 20 I _{F(AV)} 2 I _{FSM} 50 dv/dt 10000 R _{θJL} 35 T _{J,TST} -65 to	oí A A V _{RRM} 20 30 V _{RMS} 14 21 V _{DC} 20 30 I _{F(AV)} 2 30 I _{F(AV)} 2 30 I _{FSM} 50 30 dv/dt 10000 35 T _J ,T _{ST} G -65 to +125	oř A A A V_{RRM} 20 30 40 V_{RMS} 14 21 28 V_{DC} 20 30 40 $I_{F(AV)}$ 2	oí A	oř A	of A	oí A A A A A A A A OA V_{RRM} 20 30 40 50 60 80 100 V_{RMS} 14 21 28 35 42 56 70 V_{DC} 20 30 40 50 60 80 100 V_{DC} 20 30 40 50 60 80 100 $I_{F(AV)}$ 2 - - 50 60 80 100 I_{FSM} 50 - - - - - - dv/dt 10000 - - - - - - $R_{\theta,JL}$ 35 - - - - - - T_{J}, T_{ST} - - - - - - -	of A A A A A A A A A OA 5A V_{RRM} 20 30 40 50 60 80 100 150 V_{RMS} 14 21 28 35 42 56 70 105 V_{DC} 20 30 40 50 60 80 100 150 V_{DC} 20 30 40 50 60 80 100 150 V_{DC} 20 30 40 50 60 80 100 150 $I_{F(AV)}$ 2	of A A A A A A OA 5A A V_{RRM} 20 30 40 50 60 80 100 150 200 V_{RMS} 14 21 28 35 42 56 70 105 140 V_{DC} 20 30 40 50 60 80 100 150 200 V_{DC} 20 30 40 50 60 80 100 150 200 I_{FAV} 2

Schottky Rectifier SS24A Max. Ratings & Thermal Characteristics:

SBD SS24A Electrical Characteristics (T_A = 25 unless otherwise noted):

Items	Test conditions	Symbol SS2	2A <mark>SS23A~</mark> SS24A	1	SS28A~ SS210A	Unit
		· · ·				

Instantaneous forward voltage	IF=2.0A(2)		VF	0.50	0.55	0.70	0.85	0.95	v
Reverse current	VR=VDCTj=	=25	IR	0.5					mΑ
	Tj=	=100		5.0					
Note 2: Pulse test:300µs pulse	e width,1% d	uty cy	/cle.						

Schottky Rectifier SS24A Dimensions:

Schottky Rectifier SS24A Notice:

SBD SS24A is intended for use in general electronics applications.

SS24A should be worked less than the ratings; if exceeded, it may cause permanent damage,or introduce latent failure mechanisms. Ensure safety.

The absolute maximum ratings are rated values and must not be exceeded during operation. The following are the general derating methods you design a circuit with a device.

Maximum average forward rectified current : The worst case current be no greater than 80% . It is very important.

Peak forward surge current 8.3ms single half sine-wave superimposed on rated load : This rating specifies the non-repetitive peak current. This is only applied for an abnormal operation, which the general during the lifespan of the device.

Operating junction temperature : Derate this rating when using a device in order to ensure high reliability. We recommend that the device should be used at a T_J of below 100.

SUCAY SHERZHER SOCAY ELECTRONICS CO., LIG.
+8618126201429 Sylvia@socay.com Socaydiode.com
4/F, Block C, HeHengXing Science & Technology Park, 19 MinQing Road, LongHua District, Shenzhen City, GuangDong Province, China